Science Case 3 (led by Utrecht University): Investigating the added benefit of EO products for simulating reservoir operations

Science Case 3 (led by Utrecht University): Investigating the added benefit of EO products for simulating reservoir operations

Although reservoir operations have strong impacts on local to regional surface water hydrology, many land-surface and hydrological models simply ignore reservoir operations altogether. For those land-surface and hydrological models that do include reservoir operations, operations often rely on generalized rules that may not be suitable for all reservoirs. Therefore, the aim of science case 3 is to investigate the added benefit of EO products for simulating reservoir operations.

To investigate the added benefit of EO product, we compared EO-based reservoir storage estimates of GloLakes with discharge observations up and downstream of reservoirs in the Tugela river basin in South Africa, the primary region of interest. GloLakes provides valuable information on reservoir storage dynamics, which allows for estimating potential reservoir impacts on discharge. However, our results show that the reservoirs in the Tugela river basin have an insubstantial impact on the surface hydrology. No substantial discharge alternations were identified from the discharge observations, and the variability in reservoir capacity and storage was relatively small compared to the annual discharge.

Our science case continued to the Italian Po river basin, the secondary region of interest. Unfortunately, no EO-based reservoir storage estimates are available in this region, as the spatial coverage of GloLakes is limited and does not cover the region’s major reservoir. Therefore, we relied on hydrological simulations, both with and without reservoir operations, of surface hydrology to estimate the impact of reservoir operation in the Po river basin. Our results indicate that larger reservoirs in the Po river basin have an insubstantial impact on discharge, whereas smaller reservoirs can strongly affect discharge locally.

Due to the limited impacts of reservoirs in the Tugela basin and the lack of EO-based observations in the Po, our science case could not conclusively investigate the added benefit of EO products for simulating reservoir operations. Nevertheless, the potential of EO-based reservoir storage estimates are substantial. Not only will such EO-based products allow for correcting hydrological simulations without reservoirs, but they would also allow better approximation of reservoir operation rules, tailored to individual reservoirs. Therefore, further investment in EO-based reservoir storage estimates, especially in highly managed river basins, is needed to improve the state-of-the-art in hydrological modellin.

Figure 1: Simulated multi-year monthly median discharge (m3 s-1) with and without reservoirs for the Miorina reservoir. Colors indicate the hydrological models whereas linetypes indicates simulations with and without reservoirs. The shaded area indicates the 25th to 75th percentile range.

Leave a Reply

Your email address will not be published. Required fields are marked *